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Physical Complexity of Classical and Quantum
Objects and Their Dynamical Evolution
From an Information-Theoretic Viewpoint

Gavriel Segre1

Received

Charles Bennett’s measure of physical complexity for classical objects, namely logical-
depth, is used to prove that a chaotic classical dynamical system is not physically
complex. The natural measure of physical complexity for quantum objects, quantum
logical-depth, is then introduced to prove that a chaotic quantum dynamical system too
is not physically complex.
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NOTATION

∀ For every (universal quantificator)
∀ − µ − a.e. For µ − almost every
∃ Exists (existential quantificator)
∃! Exists and is unique
x = y x is equal to y
x := y x is defined as y
¬p Negation of p
� Binary alphabet {0, 1}
�n n-Letters’ alphabet
��

n Strings on the alphabet �n

�∞
n Sequences on the alphabet �n

�x String
|�x | Length of the string �x
<l Lexicographical ordering on ��

string(n) nth string in lexicographic order
x̄ Sequence
· Concatenation operator
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xn nth digit of the string �x or of the sequence x̄
�x(n) Prefix of length n of the string �x or of the

sequence x̄
�x� Canonical string of the string �x
K (�x) Plain Kolmogorov complexity of the string �x
I (�x) Algorithmic information of the string �x
U (�x)↓ U halts on input �x
Ds(�x) Logical-depth of �x at significance level s
t-DEEP(��) t-Deep strings of cbits
t-SHALLOW(��) t-Shallow strings of cbits
REC-MAP(N, N) (Total) recursive functions over N

≤T Turing reducibility
≤P

T Polynomial time Turing reducibility
≤tt Truth-table reducibility
CHAITIN-RANDOM(�∞) Martin–Löf–Solovay–Chaitin random

sequences of cbits
HALTING(µ) Halting set of the measure µ

µLebesgue Lebesgue measure
µ-RANDOM(�∞) Martin Löf random sequences of cbits w.r.t. µ

B(x̄) Brudno algorithmic entropy of the sequence x̄
BRUDNO(�∞) Brudno random sequences of cbits
STRONGLY-DEEP(�∞) Strongly-deep sequences of cbits
STRONGLY-SHALLOW(�∞) Strongly-shallow sequences of cbits
WEAKLY-DEEP(�∞) Weakly-deep sequences of cbits
WEAKLY-SHALLOW(�∞) Weakly-shallow sequences of cbits
P(X, µ) (Finite, measurable) partitions of (X, µ)
� Coarse-graining relation on partitions
A

∨
B Coarsest refinement of A and B

hCDS Kolmogorov–Sinai entropy of CDS
ψA Symbolic translator w.r.t. A
ψ

(k)
A k-Point symbolic translator w.r.t. A

ψ
(∞)
A Orbit symbolic translator w.r.t. A

cbn1,n2 Change of basis from n1 to n2

BCDS(x) Brudno algorithmic entropy of x’s orbit in CDS
H (P) Shannon entropy of the distribution P
L D, P Average code-word length w.r.t. the code D

and the distribution P
L P Minimal average code-word length w.r.t. the

distribution P
H2 One-qubit’s Hilbert space
H⊗n

2 n-Qubits’ Hilbert space
En Computational basis of H⊗n

2



Classical and Quantum Objects 1373

H⊗�
2 Hilbert space of qubits’ strings

E� Computational basis of H⊗�
2

H⊗∞
2 Hilbert space of qubits’ sequences

E∞ Computational rigged-basis of H⊗∞
2

B(H) Bounded linear operators on H
|ψ〉� Canonical program of |ψ〉
Ds(|ψ〉) Logical depth of |ψ〉 at significance

level s
t-DEEP(H⊗�

2 ) t-Deep strings of qubits
t-SHALLOW(H⊗�

2 ) t-Shallow strings of qubits
S(A) States over the noncommutative

space A
card(A) Cardinality of A
INN(A) Inner automorphisms of A
cardNC(A) Noncommutative cardinality of A
τunbiased Unbiased noncommutative

probability distribution
�∞

NC Noncommutative space of qubits’
sequences

R Hyperfinite I I1 factor
RANDOM(�∞

NC) Random sequences of qubits
≤Q

tt Quantum truth-table reducibility
WEAKLY-DEEPWEAKLY-DEEP(�∞

NC) Weakly-deep sequences of qubits
WEAKLY-SHALLOW(�∞

NC) Weakly-shallow sequences of qubits
LNC

RANDOMNESS(A, ω) Laws of randomness of (A, ω)
ω-RANDOM(�∞

NC) Random sequences of qubits w.r.t. ω

hd.e.(QDS) Dynamical entropy of the quantum
dynamical system QDS

i.e. id est
e.g. Exempli gratia

1. INTRODUCTION: THE SHALLOWNESS OF RANDOM OBJECTS

Despite denoting it with the term complexity, Andreǐ Nikolaevich Kolmogorov
(1992, 1993a,b,c; American Mathematical Society, 2000) introduced the notion
denoted nowadays by the school of Paul Vitanyi (1997) as plain-Kolmogorov-
complexity (that I will denote with the letter K from here and beyond) in order of
obtaining an intrinsic measure of the amount of information of that object and not
as a measure of the amount of physical complexity of that object.

That the amount of information and the amount of physical complexity of
an object are two completely different concepts became further clear after the
introduction by Gregory Joseph Chaitin of the notion denoted nowadays by the
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school of Paul Vitanyi (1997) as prefix-Kolmogorov-complexity and denoted by
the school of Chaitin and Cristian S. Calude simply as algorithmic information
(Calude, 2002) (and that I will denote with the letter I from here and beyond) and
the induced notion of algorithmic-randomness:

An algorithmically random object has a very high algorithmic information
but is certainly not physically complex.

Such a simple consideration is indeed sufficient to infer that algorithmic
information can in no way be seen as a measure of physical complexity.

A natural measure of physical complexity within the framework of Algo-
rithmic Information Theory, the logical depth, was later introduced by Gregory
Chaitin and Charles Bennett (Bennett, 1988), constituting what is nowadays gen-
erally considered as the algorithmic information theoretic viewpoint as to physical
complexity, although some author can still be found who not only ignores that, as
it was clearly realized by Brudno himself (1978, 1983; Segre, 2002), the chaoticity
of a dynamical system (defined as the strict positivity of its Kolmogorov–Sinai en-
tropy) is equivalent to its weak algorithmic chaoticity (defined as the condition that
almost all the trajectories, symbolically codified, are Brudno-algorithmically ran-
dom) but is weaker than its strong algorithmic chaoticity (defined as the condition
that almost all the trajectories, symbolically codified, are Martin–Löf–Solovay–
Chaitin-algorithmically random), but uses the notions of chaoticity and complexity
as if they were synonymous, a thing obviously false since, as we have seen, the
(weak) algorithmic randomness of almost all the trajectories of a chaotic dynamical
system implies exactly the opposite, namely that its trajectories are not complex at
all.

Indeed it is natural to define complex a dynamical system such that almost all
its trajectories, symbolically codified, are logical deep.

So, despite the still common fashion to adopt the terms chaoticity and com-
plexity as synonymous, one has that that every chaotical dynamical system is
shallow, as I will show in sections 2 and 3.

The key point of such an issue is so important to deserve a further repetition
with the own words of Charles Bennett (1988) illustrating the physical meaning
of the notion of logical depth and the reason why it is a good measure of physical
complexity:

The notion of logical-depth developed in the present paper was first described in Chaitin
(1977), and at greater length in Bennett (1982) and Bennett (1985); similar notions have
been independently introduced by Adleman (1979) (“potential”), (Levin and V’Jugin,
1977) (“incomplete sequence”), (Levin, 1984) (“hitting time”) and Koppel, this vol-
ume (“sophistication”). See also Wolfram’s work on “computational irreducibility”
(Wolfram, 1985) and Hartmanis’ work on time- and space-bounded algorithmic infor-
mation (Hartmanis, 1983).

We propose depth as a formal measure of value. From the earliest days of information
theory it has been appreciated that information per se is not a good measure of message



Classical and Quantum Objects 1375

value. For example a typical sequence of coin tosses has high information content but
little value; an ephemeresis, giving the positions of the moon and planets every day
for a hundred years, has no more information than the equations of motions and initial
conditions from which it was calculated, but saves its owner the effort of recalculating
these positions. The value of a message thus appears to reside not in its information
(its absolutely unpredictable parts), nor in its obvious redudancy (verbatim repetitions,
unequal digit frequencies), but rather in what might be called its buried redudancy—
parts predictable only with difficulty, things the receiver could in principle have figured
out without being told, but only at considerable cost in money, time or computation.
In other words the value of a message is the amount of mathematical or other work
plausibly done by its originator, which its receiver is saved from having to repeat.

The quantum analogue of such a notion, i.e., quantum logical depth, is introduced
in section 4.

The definition of the physical complexity of a quantum dynamical system is
then introduced in section 5, where it is shown that in the quantum case, as in the
classical case, a physically complex dynamical system is not chaotic.

2. DEFINITION OF THE PHYSICAL COMPLEXITY OF STRINGS
AND SEQUENCES OF CBITS

I will follow from here on the notation of my PhD thesis (Segre, 2002);
consequentially, given the binary alphabet � := {0, 1}, I will denote by �� the
set of all the strings on � (i.e., the set of all the strings of cbits), by �∞ the
set of all the sequences on � (i.e., the set of all the sequences of cbits) and by
CHAITIN–RANDOM(�∞) its subset consisting of all the Martin–Löf–Solovay–
Chaitin random sequences of cbits.

I will furthermore denote strings by an upper arrow and sequences by an
upper bar, so that I will talk about the string �x ∈ �� and the sequence x̄ ∈ �∞;
|�x | will denote the length of the string �x , xn will denote the nth digit of the string
�x or of the sequence x̄ while �xn will denote its prefix of length n.

I will, finally, denote by <l the lexicographical-ordering relation over �� and
by string(n) the nth string in such an ordering.

Fixed once and for all a universal Chaitin computer U , let us recall the fol-
lowing basic notions.

Given a string �x ∈ �� and a natural number n ∈ N:

Definition 2.1. Canonical program of �x :

�x� := min
<l

{�y ∈ �� : U (�y) = �x} (2.1)

Definition 2.2. �x is n-compressible:

|�x�| ≤ |�x | − n (2.2)
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Definition 2.3. �x is n-incompressible:

|�x�| > |�x | − n (2.3)

Definition 2.4. Halting time of the computation with input �x :

T (�x) :=
{

number of computational steps after which U halts on input �x , if U (�x) =↓
+∞, otherwise.

(2.4)

We have at last all the ingredients required to introduce the notion of logical depth
as to strings.

Given a string �x ∈ �� and two natural number s, t ∈ N:

Definition 2.5. Logical depth of �x at significance level s:

Ds(�x) := min{T (�y) : U (�y) = �x , �y s-incompressible} (2.5)

Definition 2.6. �x is t-deep at significance level s:

Ds(�x) > t (2.6)

Definition 2.7. �x is t-shallow at significance level s:

Ds(�x) ≤ t (2.7)

I will denote the set of all the t-deep strings as t-DEEP (��) and the set of all the
t-shallow strings as t-SHALLOW (��).

Exactly as it is impossible to give a sharp distinction among Chaitin-random
and regular strings while it is possible to give a sharp distinction among Martin–
Löf–Solovay–Chaitin-random and regular sequences, it is impossible to give a
sharp distinction among deep and shallow strings while it is possible to give a
sharp distinction among deep and shallow sequences.

Given a sequence x̄ ∈ �∞:

Definition 2.8. x̄ is strongly deep:

card{n ∈ N : Ds(�x(n)) > f (n)} < ℵ0 ∀s ∈ N, ∀ f ∈ REC – MAP(N, N) (2.8)

where, following once more the notation adopted in Segre (2002), REC – MAP
(N, N) denotes the set of all the (total) recursive functions over N.

To introduce a weaker notion of depth, it is necessary to fix the notation as to
reducibilities and degrees.

Denote the Turing reducibility by ≤T and the polynomial time Turing re-
ducibility by ≤P

T (Odifreddi, 1989). Let us recall that there is an intermediate
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constrained-reducibility among them: the one, called recursive time bound re-
ducibility, in which the halting-time is constrained to be not necessarily a polyno-
mial but a generic recursive function; since recursive time bound reducibility may
be proved to be equivalent to truth-table reducibility (I demand (Calude, 2002;
Odifreddi, 1999) for its definition and for the proof of the equivalence) I will
denote it by ≤tt.

A celebrated theorem proved by Gacs (1986) states that every sequence is
computable by a Martin–Löf–Solovay–Chaitin-random sequence:

Theorem 2.1. Gacs’ Theorem:

x̄ ≤T ȳ ∀x̄ ∈ �∞, ∀ȳ ∈ CHAITIN-RANDOM(�∞) (2.9)

This is no more true, anyway, if one adds the constraint of recursive time bound,
leading to the following:

Definition 2.9. x̄ is weakly deep:

∃ȳ ∈ CHAITIN-RANDOM(�∞) : ¬(x̄ ≤tt ȳ) (2.10)

I will denote the set of all the strongly-deep binary sequences by STRONGLY-
DEEP(�∞) and the set of all the weakly-deep binary sequences as WEAKLY-
DEEP(�∞).

Shallowness is then once more defined as the opposite of depth.

Definition 2.10. Strongly-shallow sequences of cbits:

STRONGLY-SHALLOW(�∞) := �∞ − (STRONGLY-DEEP(�∞)) (2.11)

Definition 2.11. Weakly-shallow sequences of cbits:

WEAKLY-SHALLOW(�∞) := �∞ − (WEAKLY-DEEP(�∞)) (2.12)

Weakly-shallow sequences of cbits may also be characterized in the following
useful way (Bennett, 1988):

Theorem 2.2. Alternative characterization of weakly-shallow sequences of cbits:

x̄ ∈ WEAKLY-SHALLOW(�∞) ⇔ ∃µ recursive : x̄ ∈ µ-RANDOM(�∞)
(2.13)

where, following once more the notation of Segre (2002), µ-RANDOM(�∞) de-
notes the set of all the Martin–Löf random sequences w.r.t. the measure µ.

As to sequences of cbits, the considerations made in section 1 may be thor-
oughly formalized through the following:
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Theorem 2.3. Weak-shallowness of Martin–Löf–Solovay–Chaitin random
sequences:

CHAITIN-RANDOM(�∞) ∩ WEAKLY-DEEP(�∞) = ∅ (2.14)

Proof: Since the Lebesgue measure µLebesgue is recursive and by definition:

CHAITIN-RANDOM(�∞) = µLebesgue - RANDOM(�∞) (2.15)

the thesis immediately follows by Theorem 2.2. �

3. THE DEFINITION OF THE PHYSICAL COMPLEXITY
OF CLASSICAL DYNAMICAL SYSTEMS

Since much of the fashion about complexity is based on a spread confu-
sion among different notions, starting from the basic difference among plain Kol-
mogorov complexity K and algorithmic information I, much care has to be taken.

Let us start from the following notions by Brudno:

Definition 3.1. Brudno algorithmic entropy of x̄ ∈ �∞:

B(x̄) := lim
n→∞

K (�x(n))

n
(3.1)

At this point one could think that considering the asympotic rate of algorithmic
information instead of plain Kolmogorov complexity would result in a different
definition of the algorithmic entropy of a sequence.

That this is not the case is the content of the following:

Theorem 3.1.

B(x̄) = lim
n→∞

I (�x(n))

n
(3.2)

Proof: It immediately follows by the fact that (Staiger, 1999):

|I (�x(n)) − K (�x(n))| ≤ o(n) (3.3)

�

Definition 3.2. x̄ ∈ �∞ is Brudno-random:

B(x̄) > 0 (3.4)

I will denote the set of all the Brudno random binary sequences by BRUDNO(�∞).
One great source of confusion in a part of the literature arises from the igno-

rance of the following basic result proved by Brudno himself (1978):
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Theorem 3.2. Brudno randomness is weaker than Chaitin randomness:

BRUDNO-RANDOM(�∞) ⊃ CHAITIN-RANDOM(�∞) (3.5)

as we will see in the sequel of this section.

Following the analysis performed in Segre (2002) (to which I demand for
further details), I will recall here some basic notion of Classical Ergodic Theory:

Given a classical probability space (X, µ):

Definition 3.3. Endomorphism of (X, µ):
T : HALTING(µ) → HALTING(µ) surjective:

µ(A) = µ(T −1 A)∀A ∈ HALTING(µ) (3.6)

where HALTING(µ) is the halting set of the measure µ, namely the σ -algebra of
subsets of X on which µ is defined.

Definition 3.4. Classical dynamical system:
A triple (X, µ, T ) such that

• (X, µ) is a classical probability space
• T : HALTING(µ) → HALTING(µ) is an endomorphism of (X, µ).

Given a classical dynamical system (X, µ, T ):

Definition 3.5. (X, µ, T ) is ergodic:

lim
n→∞

1

n

n−1∑
k=0

µ(A ∩ T k(B)) = µ(A)µ(B) ∀ A, B ∈ HALTING(µ) (3.7)

Definition 3.6. n-Letters alphabet:

�n := {0, . . . , n − 1} (3.8)

Clearly

�2 = � (3.9)

Given a classical probability space (X, µ):

Definition 3.7. Finite measurable partition of (X, µ):

A = {A0, . . . An−1}n ∈ N :

Ai ∈ HALTING (µ) i = 0, . . . , n − 1

Ai ∩ A j = ∅ ∀i �= j (3.10)

µ
(
X − ∪n−1

i=0 Ai
) = 0
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I will denote the set of all the finite measurable partitions of (X, µ) by P(X, µ).
Given two partitions A = {Ai }n−1

i=0 , B = {B j }m−1
j=0 ∈ P(X, µ):

Definition 3.8. A is a coarse-graining of B (A � B): every atom of A is the union
of atoms by B.

Definition 3.9. Coarsest refinement of A = {Ai}n−1
i=0 and B = {B j }m−1

j=0 ∈P(X, µ):

A ∨ B ∈ P(X, µ)

A ∨ B := {Ai ∩ B j i = 0, . . . , n − 1 j = 0, · · · , m − 1} (3.11)

Clearly P(X, µ) is closed both under coarsest refinements and under endo-
morphisms of (X, µ).

Let us observe that, beside its abstract, mathematical formalization,
Definition 3.7 has a precise operational meaning.

Given the classical probability space (X, µ), let us suppose to make an ex-
periment on the probabilistic universe it describes using an instrument whose
distinguishing power is limited in that it is not able to distinguish events belonging
to the same atom of a partition A = {Ai }n−1

i=0 ∈ P(X, µ).
Consequentially the outcome of such an experiment will be a number:

r ∈ �n (3.12)

specifying the observed atom Ar in our coarse-grained observation of (X, µ).
I will call such an experiment an operational observation of (X, µ) through

the partition A.
Considering another partition B = {B j }m−1

j=0 ∈ P(X, µ), we have obviously
that the operational observation of (X, µ) through the partition A ∨ B is the con-
juction of the two experiments consisting in the operational observations of (X, µ)
through the partitions, respectively, A and B.

Consequentially we may consistently call an operational observation of
(X, µ) through the partition A more simply an A-experiment.

The experimental outcome of an operational observation of (X, µ) through
the partition A = {Ai }n−1

i=0 ∈ P(X, µ) is a classical random variable having as dis-
tribution the stochastic vector 


µ(A0)

...

µ(An−1)




whose classical probabilistic information, i.e., its Shannon entropy, I will call the
entropy of the partition A, according to the following:
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Definition 3.10. entropy of A = {Ai }n−1
i=0 ∈ P(X, µ):

H (A) := H







µ(A0)
...

µ(An−1)





 (3.13)

It is fundamental, at this point, to observe that, given an experiment, one has to
distinguish between two conceptually different concepts:

1. the uncertainty of the experiment, i.e., the amount of uncertainty on the
outcome of the experiment before to realize it;

2. the information of the experiment, i.e., the amount of information gained
by the outcome of the experiment.

As lucidly observed by Patrick Billingsley (1965), the fact that in Classical Prob-
abilistic Information Theory both these concepts are quantified by the Shannon
entropy of the experiment is a consequence of the following:

Theorem 3.3. The soul of Classical Information Theory:

information gained = uncertainty removed (3.14)

Theorem 3.3 applies, in particular, as to the partition experiments we are
discussing.

Let us now consider a classical dynamical system CDS := (X, µ, T ).
The T -invariance of µ implies that the partitions A = {Ai }n−1

i=0 and T −1 A :=
{T −1 Ai }n−1

i=0 have equal probabilistic structure. Consequentially the A-experiment
and the T −1 A-experiment are replicas, not necessarily independent, of the same
experiment, made at successive times.

In the same way the ∨n−1
k=0T −k A-experiment is the compound experiment con-

sisting of n repetitions A, T −1 A, . . . , T −(n−1) A of the experiment corresponding
to A ∈ P(X, µ).

The amount of classical information per replication we obtain in this com-
pound experiment is clearly

1

n
H

( ∨n−1
k=0 T −k A

)
It may be proved (Kornfeld and Sinai, 2000) that when n grows this amount of
classical information acquired per replication converges, so that the following
quantity

h(A, T ) := lim
n→∞

1

n
H

( ∨n−1
k=0 T −k A

)
(3.15)

exists.



1382 Segre

In different words, we can say that h(A, T ) gives the asymptotic rate of
acquired classical information per replication of the A experiment.

We can at last introduce the following fundamental notion originally proposed
by Kolmogorov for K-systems and later extended by Yakov Sinai to arbitrary
classical dynamical systems (American Mathematical Society, 2000; Kolmogorov,
1993d; Kornfeld and Sinai, 2000; Sinai, 1976, 1994):

Definition 3.11. Kolmogorov–Sinai entropy of CDS:

hCDS := supA∈P(X,µ) h(A, T ) (3.16)

By definition we have clearly that

hCDS ≥ 0 (3.17)

Definition 3.12. CDS is chaotic:

hCDS > 0 (3.18)

Definition 3.12 shows explicitly that the concept of classical-chaos is an
information-theoretic one: a classical dynamical system is chaotic if there is at
least one experiment on the system that, no matter how many times we insist on
repeating it, continues to give us classical information.

That such a meaning of classical chaoticity is equivalent to the more popular
one as the sensible (i.e., exponential) dependence of dynamics from the initial con-
ditions is a consequence of Pesin’s Theorem stating (under mild assumptions) the
equality of the Kolmogorov–Sinai entropy and the sum of the positive Lyapunov
exponents.

This interrelation may be caught observing that

• if the system is chaotic, we know that there is an experiment whose repeti-
tion definitely continues to give information: such an information may be
seen as the information on the initial condition that is necessary to furnish
more and more with time if one wants to keep the error on the prediction
of the phase-point below a certain bound;

• if the system is not chaotic, the repetition of every experiment is useful
only a finite number of times, after which every further repetition does not
furnish further information.

Let us now consider the issue of symbolically translating the coarse-grained
dynamics following the traditional way of proceeding described in the second
section of Alekseev and Yakobson (1981): given a number n ∈ N : n ≥ 2 let us
introduce the following:
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Definition 3.13. n-Adic value:
the map vn: �∞

n  → [0, 1]:

vn(x̄) :=
∞∑

i=1

xi

ni
(3.19)

the more usual notation:

(0.x1 . . . xm . . .)n := vn(x̄) x̄ ∈ �∞
n (3.20)

and the following:

Definition 3.14. n-Adic nonterminating natural positional representation:
the map rn: [0, 1]  → �∞

n :

rn((0.x1 . . . xi . . .)n) := x̄ (3.21)

with the nonterminating condition requiring that the numbers of the form (0.x1 . . . xi

(n − 1))n = (0. . . . (xi + 1)0̄)n are mapped into the sequence x1 . . . xi (n − 1).
Given n1, n2 ∈ N: min(n1, n2) ≥ 2:

Definition 3.15. Change of basis from n1 to n2:
the map cbn1,n2 : �∞

n1
 → �∞

n2
:

cbn1,n2 (x̄) := rn2 (vn1 (x̄)) (3.22)

It is important to remark that (Calude, 2002):

Theorem 3.4. Basis-independence of randomness:

RANDOM(�∞
n2

) = cbn1,n2 (RANDOM(�∞
n1

)) ∀n1, n2 ∈ N : min(n1, n2) ≥ 2
(3.23)

Considered a partition A = {Ai }n−1
i=0 ∈ P(X, µ):

Definition 3.16. Symbolic translator of CDS w.r.t. A:
ψA : X → �n:

ψA(x) := i : x ∈ Ai (3.24)

In this way one associates to each point of X the letter, in the alphabet having
as many letters as the number of atoms of the considered partition, labeling the
atom to which the point belongs.

Concatenating the letters corresponding to the phase point at different times,
one can then codify k ∈ N steps of the dynamics:
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Definition 3.17. k-Point symbolic translator of CDS w.r.t. A:
ψ

(k)
A : X → �k

n :

ψ
(k)
A (x) := ·k−1

j=0ψA(T j x) (3.25)

and whole orbits:

Definition 3.18. Orbit symbolic translator of CDS w.r.t. A:
ψ

(∞)
A : X → �∞

n :

ψ
(∞)
A (x) := ·∞j=0ψA(T j x) (3.26)

The asymptotic rate of acquisition of plain Kolmogorov complexity of the
binary sequence obtained translating symbolically the orbit generated by x ∈ X
through the partition A ∈ P(X, µ) is clearly given by

Definition 3.19.

B(A, x) := B
(
cbcard(A),2

(
ψ∞

A (x)
) )

(3.27)

We saw in Definition 3.11 that the Kolmogorov–Sinai entropy was defined as
K (A, x) computed on the more probabilistically informative A experiment; in the
same way the Brudno algorithmic entropy of x is defined as the value of B(A, x)
computed on the more algorithmically informative A experiment:

Definition 3.20. Brudno algorithmic entropy of (the orbit starting from) x :

BCDS(x) := supA∈P(X,µ) B
(
cbcard(A),2

(
ψ

(∞)
A (x)

))
(3.28)

Demanding Brudno (1978) for further details, let us recall that, as it is natural for
different approaches of studying a same object, the probabilistic approach and the
algorithmic approach to Classical Information Theory are deeply linked:

the partial map DI : �� ◦ → �� defined by

DI (�x) := �x� (3.29)

is by construction a prefix-code of pure algorithmic nature, so that it would be
very reasonable to think that it may be optimal only for some ad hoc probability
distribution, i.e., that for a generic probability distribution P the average code
word length of DI w.r.t. P:

L DI , P =
∑

�x∈HALTING(DI )

P(�x)I (�x) (3.30)

will not achieve the optimal bound, the Shannon information H (P), stated by the
cornerstone of Classical Probabilistic Information, i.e., the following celebrated:
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Theorem 3.5. Classical noiseless coding theorem:

H (P) ≤ L P ≤ H (P) + 1 (3.31)

where L P is the minimal average code word length allowed by the distribution P.

Contrary, the deep link between the probabilistic-approach and the algorith-
mic-approach makes the miracle: under mild assumptions about the distribution
P the code DI is optimal as it is stated by the following:

Theorem 3.6. Link between Classical Probabilistic Information and Classical
Algorithmic Information:

HP:

P recursive classical probability distribution over ��

TH:

∃cP ∈ R+ : 0 ≤ L DI , P − H (P) ≤ cP (3.32)

With an eye at Theorem 3.1 it is then natural to expect that such a link between clas-
sical probabilistic information and classical algorithmic information generates a
link between the asymptotic rate of acquisition of classical probabilistic informa-
tion and the asymptotic rate of acquisition of classical algorithmic information of
the coarse-grained dynamics of CDS observed by repetitions of the experiments
for which each of them is maximal.

Demanding to Brudno (1983) for further details such a reasoning, properly
formalized, proves the following:

Theorem 3.7. Brudno’s theorem:
HP:

CDS ergodic

TH:

hCDS = BCDS(x)∀ − µ − a.e.x ∈ X (3.33)

Let us now consider the algorithmic approach to Classical Chaos Theory
strongly supported by Joseph Ford, whose objective is the characterization of
the concept of chaoticity of a classical dynamical system as the algorithmic-
randomness of its symbolically translated trajectories.

To require such a condition for all the trajectories would be too restrictive
since it is reasonable to allow a chaotic dynamical system to have a countable
number of periodic orbits.

Let us then introduce the following two notions:
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Definition 3.21. CDS is strongly algorithmically chaotic:

∀ − µ − a.e. x ∈ X, ∃A ∈ P(X, µ) : cbcard(A),2
(
ψ

(∞)
A (x)

)
∈ CHAITIN-RANDOM(�∞) (3.34)

Definition 3.22. CDS is weak algorithmically chaotic:

∀ − µ − a.e. x ∈ X, ∃A ∈ P(X, µ) : cbcard(A),2
(
ψ

(∞)
A (x)

)
∈ BRUDNO-RANDOM(�∞) (3.35)

The difference between Definition 3.21 and Definition 3.22 follows by
Theorem 3.2.

Clearly Theorem 3.7 implies the following:

Corollary 3.1.

chaoticity = weak algorithmic chaoticity

chaoticity < strong algorithmic chaoticity

that shows that the algorithmic approach to Classical Chaos Theory is equivalent
to the usual one only in weak sense.

The plethora of wrong statements found in a part of the literature caused
by the ignorance of Corollary 3.1 is anyway of little importance if compared with
the complete misunderstanding of the difference existing among the concepts of
chaoticity and complexity for classical dynamical systems; with this regards the
analysis made in section 1. may be now thoroughly formalized introducing the
following natural notions:

Definition 3.23. CDS is strongly-complex:

∀ − µ − a.e. x ∈ X, ∃A ∈ P(X, µ) : cbcard(A),2
(
ψ

(∞)
A (x)

)
∈ STRONGLY-COMPLEX(�∞) (3.36)

Definition 3.24. CDS is weakly-complex:

∀ − µ − a.e. x ∈ X, ∃A ∈ P(X, µ) : cbcard(A),2
(
ψ

(∞)
A (x)

)
∈ WEAKLY-COMPLEX(�∞) (3.37)

One has that

Theorem 3.8. Weak-shallowness of chaotic dynamical systems:

CDS chaotic ⇒ CDS weakly-shallow
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Proof: The thesis immediately follows combining Theorem 2.3 with the defini-
tions 3.23 and 3.24. �

4. THE DEFINITION OF THE PHYSICAL COMPLEXITY OF STRINGS
AND SEQUENCES OF QUBITS

The idea that the physical complexity of a quantum object has to be measured
in terms of a quantum analogue of Bennett’s notion of logical depth has been first
proposed by Nielsen (2002a,b).

Unfortunately, beside giving some general remark about the properties he
thinks such a notion should have, Nielsen has not given a mathematical definition
of it.

The first step in this direction consists, in my opinion, in considering that,
such as the notion of classical–logical-depth belongs to the framework of Classical
Algorithmic Information Theory, the notion of quantum–logical-depth belongs to
the framework of Quantum Algorithmic Information Theory (Segre, 2002).

One of the most debated issues in such a discipline, first discussed by its father
Svozil (1996) and rediscovered later by the following literature (Berthiaume et al.,
2001; Gacs, 2000; Manin, 1999; Segre, 2002; Vitanyi, 1999; Vitanyi, 2001), is
whether the programs of the involved universal quantum computers have to be
strings of cbits or strings of qubits.

As I have already noted in Segre (2002), anyway, it must be observed that,
owing to the natural bijection among the computational basisE� of the Hilbert space
of qubits’ strings (notions that I am going to introduce) and ��, one can always
assume that the input is a string of qubits while the issue, more precisely restated,
is whether the input has (or not) to be constrained to belong to the computational
basis.

So, denoting by H2 := C
2 the one qubit’s Hilbert space (endowed with its or-

thonormal computational basis E2 := {|i〉, i ∈ �}), denoting by H⊗n
2 := ⊗n

k=0H2

the n-qubits’ Hilbert space (endowed with its orthonormal computational basis
En := {|�x〉, �x ∈ �n}), denoting by H⊗�

2 := ⊕∞
n=0H⊗n

2 the Hilbert space of qubits’
strings (endowed with its orthonormal computational basis E� := {|�x〉, �x ∈ ��})
and denoting by H⊗∞

2 := ⊗n∈NH2 the Hilbert space of qubits’ sequences (en-
dowed with its orthonormal computational rigged-basis2 E∞ := {|x̄〉, x̄ ∈ �∞}),
one simply assumes that, instead of being a classical Chaitin universal computer, U
is a quantum Chaitin universal computer, i.e., a universal quantum computer whose
input, following Svozil’s original position on the mentioned issue, is constrained to

2 As it should be obvious, the unusual locution rigged-basis I am used to adopt is simply a shortcut
to denote that such a “basis” has to be intended in the mathematical sense it assumes when H⊗∞

2
is considered as endowed with a suitable rigging, i.e., as part of a suitable rigged Hilbert space
S ⊂ H⊗∞

2 ⊂ S ′ as described in Reed and Simon (1975, 1980).
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belong to E� and is such that, w.r.t. the natural bijection among E� and ��, satisfies
the usual Chaitin constraint of having prefixfree halting-set.

The definition of the logical depth of a string of qubits is then straightforward:
given a vector |ψ〉 ∈ H⊗�

2 and a string �x ∈ ��:

Definition 4.1. Canonical program of |ψ〉:
|ψ〉� := min

<l

{�y ∈ �� : U (�y) = |ψ〉} (4.1)

Definition 4.2. Halting time of the computation with input |�x〉:

T (�x) :=
{

Number of computational steps after which U halts on input �x , if U (�x) =↓
+∞, otherwise.

(4.2)

Definition 4.3. Logical depth of |ψ〉 at significance level s:

Ds(|ψ〉) := min{T (�y) : U (�y) = |ψ〉, �y s-incompressible} (4.3)

Definition 4.4. |ψ〉 is t-deep at significance level s:

Ds(|ψ〉) > t (4.4)

Definition 4.5. |ψ〉 is t-shallow at significance level s:

Ds(|ψ〉) ≤ t (4.5)

I will denote the set of all the t-deep strings of qubits as t-DEEP(H⊗�
2 ).

Let us observe that a sharp distinction among depth and shallowness of qubits’
strings is impossible; this is nothing but a further confirmation of the fact, so
many times shown and analyzed in Segre (2001), that almost all the concepts
of Algorithmic Information Theory, both Classical and Quantum, have a clear,
conceptually sharp meaning only when sequences are taken into account.

The great complication concerning sequences of qubits consists in that their
mathematically rigorous analysis requires to give up the simple language of Hilbert
spaces passing to the more sophisticated language of noncommutative spaces;
indeed, as extensively analyzed in Segre (2002) adopting the notion of noncom-
mutative cardinality therein explicitly introduced,3 the fact that the correct non-
commutative space of qubits’ sequences is the hyperfinite II1 factor:

3 Following Miklos Redei’s (1998, 2001) many remarks mentioned in Segre (2002), about how von
Neumann considered his classification of factors as a theory of noncommutative cardinalities although
he never thought, as well as Redei, that the same ℵ symbolism of the commutative case could be
adopted.



Classical and Quantum Objects 1389

Definition 4.6. Noncommutative space of qubits’ sequences:

�∞
NC := ⊗∞

n=0(M2(C), τunbiased) = R (4.6)

and not the noncommutative space B(H2
⊗∞) of all the bounded linear operators

on H2
⊗∞ (that could be still managed in the usual language of Hilbert spaces) is

proved by the fact that, as it must be, �∞
NC has the continuum noncommutative-

cardinality:

cardNC(�∞
NC) = ℵ1 (4.7)

while B(H2
⊗∞) has only the countable noncommutative cardinality:

cardNC(��
NC) = ℵ0 (4.8)

While Definition 2.8 of a strongly-deep sequence of cbits has no natural
quantum analogue, the definition of a weakly-deep sequence of qubits is straight-
forward.

Denoting by RANDOM(�∞
NC) the space of all the algorithmically random

sequences of qubits, for whose characterization I demand to (Segre, 2002), let
us observe that the equality between truth-table reducibility and recursive time
bound reducibility existing as to Classical Computation may be naturally imposed
to Quantum Computation in the following way:

Given two arbitrary mathematical quantities x and y:

Definition 4.7. x is quantum-truth-table reducible to y:

x ≤Q
tt y := x is U -computable from y in bounded U -computable time. (4.9)

Given a sequence of qubits ā ∈ �∞
NC:

Definition 4.8. ā is weakly-deep:

∃b̄ ∈ RANDOM(�∞
NC) : ¬(

ā ≤Q
tt b̄

)
(4.10)

Denoting the set of all the weakly-deep sequences of qubits as WEAKLY-
DEEP(�∞

NC):

Definition 4.9. Set of all the weakly-shallow sequences of qubits:

WEAKLY-SHALLOW(�∞
NC) := �∞

NC − (WEAKLY-DEEP(�∞
NC)) (4.11)

It is natural, at this point, to conjecture that an analogue of Theorem 2.2 exists in
Quantum Algorithmic Information Theory too.

Conjecture 4.1. Alternative characterization of weakly-shallow sequences of
qubits:

ā ∈ WEAKLY-SHALLOW(�∞
NC) ⇔ ∃ω ∈ S(�∞

NC)U -computable :
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ā ∈ ω-RANDOM(�∞
NC) (4.12)

where ω-RANDOM(�∞
NC) denotes the set of all the ω-random sequences of

qubits w.r.t. the state ω ∈ S(�∞
NC) to be defined generalizing the definition of

RANDOM(�∞
NC) to states different by τunbiased along the lines indicated in Segre

(2001) as to the definition of the laws of randomness LNC
RANDOMNESS(�∞

NC, ω) of the
noncommutative probability space (�∞

NC, ω).

As to sequences of qubits, the considerations made in section 1 may be
thoroughly formalized, at the prize of assuming Conjecture 4.1 as an hypothesis,
through the following:

Theorem 4.1. Weak-shallowness of random sequences of qubits:
HP:

Conjecture 4.1 holds

TH:

RANDOM
(
�∞

NC

) ∩ WEAKLY − DEEP
(
�∞

NC

) = ∅ (4.13)

Proof: Since the unbiased state τunbiased is certainly U -computable and by defi-
nition:

RANDOM(�∞
NC) = τunbiased-RANDOM(�∞

NC) (4.14)

the assumption of Conjecture 4.1 as an hypothesis immediately leads to the
thesis. �

5. THE DEFINITION OF THE PHYSICAL COMPLEXITY OF
QUANTUM DYNAMICAL SYSTEMS

As we have seen in section 3 the Kolmogorov–Sinai entropy hKS(CDS) of a
classical dynamical system CDS := (X, µ, T ) has a clear physical information-
theoretic meaning that we can express in the following way:

1. an experimenter is trying to obtain information about the dynamical evo-
lution of CDS performing repeatedly on the system a given experiment
exp ∈ EXPERIMENTS;

2. h(exp, CDS) is the asymptotic rate of acquisition of classical information
about the dynamics of CDS that he acquires replicating exp;

3. hKS(CDS) is such an asymptotic rate, computed for the more informative
possible experiment:

hKS(CDS) = supexp ∈ EXPERIMENTS h(exp, CDS) (5.1)
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Let us now pass to analyze quantum dynamical systems, for whose definition and
properties I demand to (Segre, 2002).

Given a quantum dynamical system (QDS) the physical information-
theoretical way of proceeding would consist in analyzing the same experimen-
tal situation in which an experimenter is trying to obtain information about the
dynamical evolution of QDS performing repeatedly on the system a given experi-
ment exp ∈ EXPERIMENTS:

1. to define h(exp, QDS) as the asymptotic rate of acquisition of information
about the dynamics of QDS that he acquires replicating the experiment
exp;

2. to define the dynamical entropy of QDS as such an asymptotic rate, com-
puted for the more informative possible experiment:

resulting in the following:

Definition 5.1. Dynamical entropy of QDS:

hd.e.(QDS) = supexp ∈ EXPERIMENTS h(exp, QDS) (5.2)

Definition 5.2. QDS is chaotic:

hd.e.(QDS) > 0 (5.3)

The irreducibility of Quantum Information Theory to Classical Information
Theory, caused by the fact that Theorem 3.3 does not extend to the quantum case
owing to the existence of some nonaccessible information about a quantum sys-
tem (as implied by the Grönwald–Lindblad–Holevo Theorem) and the consequent
irreducibility of the qubit to the cbit (Nielsen and Chuang, 2000; Segre, 2002),
would then naturally lead to the physical issue whether the information acquired
by the experimenter is classical or quantum, i.e., if hd.e. (QDS) is a number of cbits
or a number of qubits.

Such a physical approach to quantum dynamical entropy was performed first
by Lindblad (1979) and later refined and extended by Robert Alicki and Mark
Fannes resulting in the so-called Alicki–Lindblad–Fannes entropy (Alicki and
Fannes, 2001).

Many attempts to define a quantum analogue of the Kolmogorov–Sinai entropy
pursued, instead, a different purely mathematical approach consisting in general-
izing noncommutatively the mathematical machinery of partitions and coarsest
refinements underlying Definition 3.11, obtaining mathematical objects whose
(eventual) physical meaning was investigated subsequently.

This was certainly the case as to the Connes–Narnhofer–Thirring entropy,
the entropy of Sauvageot and Thouvenot and Voiculescu’s approximation entropy
(Connes et al., 1998; Stormer, 2000).
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As to the Connes–Narnhofer–Thirring entropy, in particular, the noncommu-
tative analogue playing the role of the classical partitions are the so-called Abelian
models whose (eventual) physical meaning is rather obscure since, as it has been
lucidly shown by Fabio Benatti in his very beautiful book (Benatti, 1993), they
do not correspond to physical experiments performed on the system, since even a
projective measurement (i.e., a measurement corresponding to a Projection Valued
Measure) cannot, in general, provide an abelian model, owing to the fact that its
reduction formula corresponds to a decomposition of the state of the system if
and only if the measured observable belongs to the centralizer of the state of the
system.

It may be worth observing, by the way, that the nonexistence of an agree-
ment into the scientific community as to the correct quantum analogue of the
Kolmogorov–Sinai entropy and hence on the definition of quantum chaoticity
should not surprise, such an agreement lacking even for the well more basic notion
of quantum ergodicity, Zelditch’s quantum ergodicity (Zelditch, 1996) (more in
the spirit of the original Von Neumann’s quantum ergodicity (von Neumann, 1929)
to which it is not anyway clear if it reduces exactly as to quantum dynamical sys-
tems of the form (A, ω, α) with cardNC(A) ≤ ℵ0 and α ∈ INN(A)) differing from
Thirring’s quantum ergodicity (Thirring, 1983) adopted both in Benatti (1993) and
in (Alicki and Fannes, 2001).

Returning, now, to the physical approach based on Definition 5.1, the men-
tioned issue whether the dynamical entropy hd.e.(QDS) is a measure of classical
information or of quantum information (i.e., if it is a number of cbits or qubits)
is of particular importance as soon as one tries to extend to the quantum domain
Joseph Ford’s algorithmic approach to Chaos Theory seen in section 3:

1. in the former case, in fact, one should define quantum algorithmic chaotic-
ity by the requirement that almost all the trajectories, symbolically codified
in a suitable way, belong to BRUDNO(�∞) for quantum weak algorithmic
chaoticity and to CHAITIN-RANDOM(�∞) for quantum strong algorith-
mic chaoticity;

2. in the latter case, instead, one should define quantum algorithmic chaoticity
by the requirement that almost all the trajectories, symbolically codified
in a suitable way, belong to RANDOM(�∞

NC).

In any case one would then be tempted to conjecture the existence of a Quan-
tum Brudno’s Theorem stating the equivalence of quantum chaoticity and quantum
algorithmic chaoticity, at least in weak sense, for quantum ergodic dynamical sys-
tems.

The mentioned issue whether the dynamical entropy hd.e.(QDS) is a measure
of classical information or of quantum information (i.e., if it is a number of cbits or
qubits) is of great importance also as to the definition of a deep quantum dynamical
system (i.e., a physically-complex quantum dynamical system):



Classical and Quantum Objects 1393

1. in the former case, in fact, one should define a strongly (weakly)-deep
quantum dynamical system as a quantum dynamical system such that al-
most all its trajectories, symbolically codified in a suitable way, belong to
STRONGLY-DEEP(�∞)(WEAKLY-DEEP(�∞));

2. in the latter case, instead, one should define a weakly-deep quantum
dynamical system as a quantum dynamical system such that almost all its
trajectories, symbolically codified in a suitable way, belong to WEAKLY-
DEEP(�∞

NC).

In any case, or by Theorem 2.3 or by Theorem 4.1, one would be almost
certainly led to a quantum analogue of Theorem 3.8 stating that a chaotic quantum
dynamical system is weakly-shallow, i.e., is not physically complex.
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